Apr 24 – 26, 2025 HYBRID
Bishkek, Kyrgyzstan
Asia/Bishkek timezone

Solution of the Cauchy problem for a system of ordinary differential equations with a small parameter

Apr 24, 2025, 3:35 PM
15m
KTMU (Bishkek, Kyrgyzstan)

KTMU

Bishkek, Kyrgyzstan

C. Aytmatov Campus, Kyrgyzstan-Turkish Manas University, 720038, Jal, Bishkek, KYRGYZSTAN
Oral Presentation Modern Applications in Mathematical Modeling, Data Analysis, Optimization, Numerical Methods and Scientific Programming, Mathematical Biology, Mathematical Chemistry and Mathematical Physics Mathematics and Computational Sciences Session 1 Hall 2

Speaker

Dr Ella Abylaeva (Kyrgyz-Turkish Manas University)

Description

Consider the Cauchy problem for a system of ordinary differential equations with a small parameter:
\begin{equation}
L_\varepsilon u(x,\varepsilon) \equiv \varepsilon u'(x) + A(x)u(x) = f(x), \quad x \in (0,1], \quad u(0,\varepsilon) = u^0 \tag{1}
\end{equation}
under the following assumptions: the matrix $A(x) \in C^\infty\left([0,1], \mathbb{C}^{n \times n}\right)$ is positive definite, and $f(x) \in C^\infty\left([0,1], \mathbb{C}^n\right)$.

Let us perform an extension of problem (1) by introducing the regularizing variable $\xi = \frac{x}{\varepsilon}$ and then we obtain the extended problem:
\begin{equation}
\widetilde{L}\varepsilon \widetilde{u}(x,\xi,\varepsilon) \equiv \varepsilon \partial_x \widetilde{u} + \partial\xi \widetilde{u} + A(x)\widetilde{u} = f(x), \quad (x,\xi) \in \Omega, \quad \widetilde{u}(0,0,\varepsilon) = u^0. \tag{2}
\end{equation}

Keywords Small parameter, singular perturbation, regularization.

Primary authors

Prof. Asan Omuraliev (Kyrgyz Technical University) Dr Ella Abylaeva (Kyrgyz-Turkish Manas University)

Co-authors

Dr Peyil Esengul kyzy (Kyrgyz-Turkish Manas University) Dr Erbil Cetin (Ege University)

Presentation materials

There are no materials yet.