



### Stochastic Parallel Machine Scheduling under Processing Time Uncertainties

Selçuk Gören

Kyrgyz-Turkish Manas University

TURK2025

- Outline
- Introduction
- **Problem Definition**
- **Proposed Method**
- Algorithms
- **Results and Conclusion**



### Presentation Plan

Introduction

Problem Definition

Proposed Method (main idea)

> Algorithms

Results and Conclusion

КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



### Outline

- Introduction
- **Problem Definition**
- **Proposed Method**
- Algorithms
- **Results and Conclusion**



### Introduction

- Scheduling: assigning resources (machines) to tasks (jobs)
- Objective functions: makespan, tardiness, completion time, earliness
- Literature is rich in deterministic problems
  - Processing times
  - Release dates
  - Due dates







- Outline
- Introduction
- **Problem Definition**
- **Proposed Method**
- Algorithms
- **Results and Conclusion**



### Problem Definition

- $Pm||C_{\max}|$
- *m* identical parallel machines
- The objective is to minimize makespan







### Outline

### Introduction

- **Problem Definition**
- **Proposed Method**
- Algorithms
- **Results and Conclusion**

## Problem Definition

•  $\mathbb{E}[f(X)] \neq f(\mathbb{E}[X])$ 

•

- Scenario-based stochastic version
  - Deterministic equivalent

$$\min \sum_{\substack{s=1\\n}}^{3^{n}} z_{s} \alpha_{s}$$

$$z_{s} \ge \sum_{j=1}^{n} p_{js} x_{ij} \qquad \forall i, s$$

$$\sum_{\substack{i=1\\x_{ij} \in \{0,1\}}}^{m} x_{ij} = 1 \qquad \forall j$$

$$\forall i, j$$

design by m.kaan yesilyurt

КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



Outline

Introduction

**Problem Definition** 

**Proposed Method** 

Algorithms

**Results and Conclusion** 



### Dual Decomposition: Nonanticipativity

• Create copies of here-and-now first-stage variables  $x_{ij}$  as  $x_{ijs}$ 



design by m.kaan yesilyurt

КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



6



**Outline** 

Introduction

**Algorithms** 

**Problem Definition** 

**Proposed Method** 

**Results and Conclusion** 

# Dual Decomposition: Lagrangian Relaxation

• Dualize nonanticipativity constraints to get the Lagrangian relaxation



КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



**Outline** 

Introduction

**Problem Definition** 

**Proposed Method** 

**Algorithms** 

**Results and Conclusion** 

# •

### Dual Decomposition: Voilà

Now each scenario has its own sub problem:

Sub Problem with s = 1:

$$Z_{LR_1} = \min a_1 z_1 + \sum_{j=1}^n \sum_{i=1}^m \lambda_{ij} (1 - a_1) x_{ij1}$$

$$z_1 \ge \sum^n p_{j1} x_{ij1}$$

 $\overline{j=1}$ 

т

i=1

∀j

$$x_{ij1} = 1$$

$$x_{ij1} \in \{0,1\} \qquad \forall i,j$$

КЫРГЫЗ-ТҮРК



8

### МАНАС УНИВЕРСИТЕТИ design by m.kaan yesilyurt

**Outline** 

Introduction

**Problem Definition** 

**Proposed Method** 

**Algorithms** 

**Results and Conclusion** 

### Dual Decomposition: Voilà

Now each scenario has its own sub problem: •

Sub Problem with fixed  $s \neq 1$ :

$$Z_{LR_s} \min a_s z_s - \sum_{j=1}^n \sum_{i=1}^m \lambda_{ij} a_s x_{ijs}$$

$$z_s \ge \sum_{j=1}^n p_{js} x_{ijs}$$

$$\sum_{i=1}^{m} x_{ijs} = 1$$

$$x_{ijs} \in \{0,1\} \qquad \forall i,j$$

КЫРГЫЗ-ТҮРК

∀i

∀j



МАНАС УНИВЕРСИТЕТИ design by m.kaan yesilyurt

Outline

- Introduction
- **Problem Definition**
- Proposed Method

Algorithms

**Results and Conclusion** 

### **Dual Decomposition: Combining Solutions**

• We can solve each sub problem separately and then

$$Z_{LR(\lambda)} = \sum_{s=1}^{3^n} Z_{LR_s}$$

- We have a small problem: Any set of  $\lambda_{ij}$ 's provides just a lower bound!
- OK, then let's find the best  $\lambda_{ij}$ 's.



FIO.

Outline

Introduction

**Problem Definition** 

**Proposed Method** 

Algorithms

**Results and Conclusion** 



- Initialization:  $\lambda_{ij} = \lambda_{ij}^{0}$
- Iteration  $k: \lambda_{ij} \leftarrow \lambda_{ij}^{k}$ 
  - Decompose and solve  $Z_{LR}(\lambda_{ij}^{k})$  with solution  $x(\lambda_{ij}^{k})$  and the objective function value  $z(\lambda_{ij}^{k})$

design by m.kaan yesilyur

• 
$$\lambda_{ij}^{k+1} = \max\{(\lambda_{ij}^{k} - \mu_k \cdot (\sum_{s=2}^{3^n} a_s(x_{ij1} - x_{ijs})), 0\}$$

•  $k \leftarrow k+1$ 

• We don't need to have strong duality! This is only a heuristic.



### Branch-and-Bound Algorithm

# **TURK2025**

- Outline
- Introduction
- **Problem Definition**
- **Proposed Method**
- Algorithms
- **Results and Conclusion**





КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



12

- Outline
- Introduction
- **Problem Definition**
- **Proposed Method**

**Algorithms** 

**Results and Conclusion** 

## Branch-and-Bound Algorithm

- Step 1: Set solution of the stochastic problem  $\underline{z} = +\infty$  and denote L as the node set in the search tree
- Step 2: Terminate if there is no node in the node set *L*. The incumbent solution  $\hat{x}$  that yields objective value  $\underline{z}$  is optimal.
- Step 3: Select a node *P* from *L*, solve the  $z_{LD}$  of  $P(z_{LD}(P))$  by subgradient search and delete it from the problem set. Go to Step 2 if *P* is infeasible.

desian bv m.kaan vesilvu



КЫРГЫЗ-ТҮРК



- Outline
- Introduction
- **Problem Definition**
- **Proposed Method**

**Algorithms** 

**Results and Conclusion** 



## Branch-and-Bound Algorithm

- Step 4: If  $\underline{z} \leq z_{LD}(P)$  go to Step 2. Else,
- If the nonanticipativity holds (i.e. solution is feasible), update  $\underline{z}$  by  $\underline{z} = z_{LD}(P)$ and delete all the problems P' with  $z_{LD}(P') \ge \underline{z}$ , return back to Step 2.
- If the nonanticipativity does not hold, compute average  $\overline{x^i}$ , if  $0 \le \overline{x^i} \le 0.5$ , set  $x^i$  as 0, and 1 otherwise. Check feasibility. If feasible, then compute objective function z of this new problem and update  $\underline{z}$  by  $\underline{z} = \min\{\underline{z}, z\}$  and delete all the problems with higher Lagrangian dual values than  $\underline{z}$ , Continue with Step 5.
- Step 5. To branch, compute the average  $\overline{x^i}$  values, select the most non-integer  $\overline{x^i}$  (the closest one to 0.5) and add two new problems with new constraints  $x^i = 0$  and  $x^i = 1$ . Continue with Step 2.

Atatürk

### Outline

Introduction

**Problem Definition** 

**Proposed Method** 

Algorithms

**Results and Conclusion** 

| Expected Processing Time (EPT) | U[1,100]                           |
|--------------------------------|------------------------------------|
| Processing Time Variation      | Low: {EPT * 0.8 ,EPT, EPT *1.2}    |
|                                | Medium : {EPT * 0.5 ,EPT, EPT *1.5 |
|                                | High : {EPT * 0.2 ,EPT, EPT *1.8}  |
| Total number of jobs (n)       | 10                                 |
| Machine number (m)             | 3,5                                |

Computational Tests

КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



15

### **Computational Tests**

# **TURK2025**

Outline

Introduction

**Problem Definition** 

**Proposed Method** 

Algorithms

**Results and Conclusion** 



|    |   |               | Direct Model |                       | Dual Decomposition |                       |                |
|----|---|---------------|--------------|-----------------------|--------------------|-----------------------|----------------|
| n  | m | Variatio<br>n | GAP          | Incumbent<br>Solution | GAP                | Incumbent<br>Solution | Lower<br>Bound |
| 10 | 3 | Medium        | 5%           | 216,67                | 14%                | 216,461               | 186            |
| 10 | 3 | Medium        | 15%          | 213,64                | 14%                | 207,652               | 177,7          |
| 10 | 3 | Medium        | 8%           | 175,74                | 15%                | 175,303               | 149,4          |
| 10 | 3 | High          | 5%           | 236,28                | 21%                | 235,561               | 186,7          |
| 10 | 3 | High          | 75%          | 528,36                | 21%                | 226,603               | 178,6          |
| 10 | 3 | High          | 25%          | 198,09                | 21%                | 191,65                | 150,5          |
| 10 | 5 | Low           | 79%          | 552,36                | 10%                | 133,314               | 119,7          |
| 10 | 5 | Low           | 6%           | 122,92                | 6%                 | 122,092               | 114,5          |
| 10 | 5 | Low           | 79%          | 445,36                | 7%                 | 102,948               | 96,01          |
| 10 | 5 | Medium        | 93%          | 552,36                | 19%                | 148,529               | 120,4          |
| 10 | 5 | Medium        | 5%           | 141,18                | 15%                | 140,765               | 120,2          |
| 10 | 5 | Medium        | 47%          | 187,49                | 17%                | 119,074               | 99,33          |
| 10 | 5 | High          | 75%          | 552,36                | 25%                | 170,767               | 127,8          |
| 10 | 5 | High          | 35%          | 220,30                | 17%                | 160,734               | 133,3          |
| 10 | 5 | High          | 75%          | 445,36                | 18%                | 135,897               | 111            |

КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



16

- **Outline**
- Introduction
- **Proposed Method**
- **Algorithms**
- **Results and Conclusion**



### **Future Research Directions**

- Number of scenarios increases exponentially with n•
  - A clever way to sample among all possible scenarios ٠
  - How to handle continuous processing time distributions? •
- Maybe we don't need the tightest lower bound at each node in the B&B tree

- Only invoke subgradient search when necessarry •
- How to handle large problems with many machines and many jobs? Heuristics •







Outline

Introduction

**Problem Definition** 

**Proposed Method** 

Algorithms

**Results and Conclusion** 



КЫРГЫЗ-ТҮРК МАНАС УНИВЕРСИТЕТИ



18